
What	 do	 we	 know	 about	 transversity	 
distributions	 of	 the	 nucleon?	 

Alexei	 Prokudin	 
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Transversity is poorly known?         

H. E. Montgomery                                8    QCD Evolution 2016 
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angular momentum 
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World data for F2p        
 f1  from fits of   
thousands data

World data for g1p 
g1  from fits of    
hundreds data

World data for h1         
from fits of  tens data

slide from H.Montgomery, QCD Evolution 2016
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  1st Mellin moment of  transversity  ⇒  tensor “charge”

Tensor  Charge   
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 tensor charge not directly accessible in LSM  
 low-energy footprint of new physics at higher scales ? 

Example:  neutron β−decay   n → p e− νe

β-decays and BSM physics

Ten effective couplings

E << Λ

1/Λ2  GF ~ g2Vij/Mw2 ~1/v2

• In the SM,  W exchange (V-A, universality)
β-decays and BSM physics

Ten effective couplings

E << Λ

1/Λ2  GF ~ g2Vij/Mw2 ~1/v2

• In the SM,  W exchange (V-A, universality)

SM BSM

εT gT ≈ MW
2 / MBSM

2

Current precision of  0.1%  ⇒  [3-5] TeV bound for BSM scale 

_

GF ⇠ g2

M2
W

slide courtesy of M. Radici

See talk of Rajan Gupta



5

What did we know about transversity before 
the EIC whitepaper ?   



Boost and rotation do not commute → helicity and transversity are different! 

Transversity is a chiral odd quantity → needs another chiral odd quantity to be measured in  
Semi Inclusive Deep Inelastic Scattering (SIDIS) 

Helicity distribution 
 

Transversity distribution 
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First extractions of  transversity: the Collins effect  
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Anselmino et al., Nucl.Phys.Proc.Suppl.   
191 (2009) 98-107 

quark

correlation ST and pT 
→ azimuthal asymmetry

sin(�h + �S)

Update on transversity and Collins functions from SIDIS and e+e− data 7
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Figure 5. The transversity distribution functions
for u and d flavours as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the Sof-
fer bound [46] (highest or lowest lines) and the
(wider) uncertainty bands of our previous extrac-
tion [20].

although this might not be the proper evolution,
it should mitigate the above-mentioned effect.

As it is well known, in a non relativistic the-
ory the helicity and the transversity distributions
should be equal. We then show in Fig. 7 the
extracted transversity distribution together with
the helicity distribution of Ref. [38] at Q2 = 2.4
GeV2. It results that, both for u and d quarks,
we have |∆T q| < |∆q|.

Another interesting quantity, related to the
first x-moment of the transversity distribution,
is the tensor charge:

δq =

∫ 1

0
dx (∆T q − ∆T q̄) =

∫ 1

0
dx∆T q (20)

where the last equality is valid for zero antiquark
transversity, as assumed in our approach. From
our analysis we get, at Q2 = 0.8 GeV2,

δu = 0.54+0.09
−0.22 δd = −0.23+0.09

−0.16 . (21)

Such values are quite close to various model pre-
dictions [47,48,49,50] for tensor charges which
span the ranges 0.5 ≤ δu ≤ 1.5 and −0.5 ≤

(z
)

un
f

(z
)/2

D
un

f
 DN

∆−
(z

)
fa

v
(z

)/2
D

fa
v

 DN
∆ 

  )
(z

, p
un

f
 DN

∆−
  )

(z
, p

fa
v

 DN
∆ 

z   (GeV)p

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1 2 = 2.4 GeV2Q
z = 0.36

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 2 = 2.4 GeV2Q
z = 0.36

Figure 6. Favoured and unfavoured Collins frag-
mentation functions as determined by our global
fit, at Q2 = 2.4 GeV2; we also show the positiv-
ity bound and the (wider) uncertainty bands as
obtained in Ref. [20].
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Figure 7. Comparison of the extracted transver-
sity (solid line) with the helicity distribution
(dashed line) at Q2 = 2.4 GeV2. The Soffer
bound [46] (blue solid line) is also shown.

Efremov et al (2005), Vogelsang, Yuan (2005),  
Anselmino et al (2005,2009), Collins et al (2006)… 

Collins function

TMD factorization

SIDIS data from              and hermes

e+e– data from               

Collins  (1992)

pT
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Collins, Heppelman, Ladinsky (1994)

h1(x)
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1 (z,Mh)

di-hadron fragmentation  (DiFF)  

correlation between quark pol. ST and 2RT 
→ azimuthal asymmetry
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Radici, Jakob, Bianconi, (2002)

slide courtesy of M. Radici

Bacchetta, Courtoy, Radici (2011)

considering the errors on the parametrization and taking
the upper and lower limits for the combination of interest.
Our data points seem not in disagreement with the extrac-
tion. However, a word of caution is needed here: while the
error bars of our data points correspond to 1! deviation
from the central value, the uncertainty on the parametriza-
tion [32] corresponds to a deviation !"2 ! 17 from the
best fit (see Ref. [33] for more details). In any case, to draw
clearer conclusions more data are needed (e.g., from the
COMPASS Collaboration [18]).

In summary, we have presented a determination of the
transversity parton distribution in the framework of collinear
factorization by using data for pion-pair production in deep-
inelastic scattering off transversely polarized targets, com-
bined with data of eþe# annihilations into pion pairs. The
final trend of the extracted transversity seems not to be in
disagreement with the transversity extracted from the
Collins effect [32]. More data are needed to clarify the issue.
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also Andrea Bianconi for many illuminating discussions.
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What about factorization for other processes ?   
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proton

lepton lepton

2 pions

electron

positron
2 pions

proton

proton

2 pions

Bacchetta & Radici, P.R. D70 (04) 094032

Artru & Collins, Z.Phys. C69 (96) 277     
Boer, Jakob, Radici, P.R.D67 (03) 094003 

Jaffe, Jin, Tang, P.R.L.80 (98) 1166  
Radici, Jakob, Bianconi, P.R.D65 (02) 074031 

Bacchetta & Radici, P.R. D67 (03) 094002

Collinear factorization for dihadron production
e+e–

SIDIS PP
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proton

lepton lepton
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positron
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proton
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DeFlorian & Vanni, P.L.B578 (04) 139  
Ceccopieri, Radici, Bacchetta, P.L.B650 (07) 81   

Zhou and Metz, P.R.L. 106 (11) 172001 
(Mh—evolution of DiFFs)

Standard DGLAP evolution 
equations

Bacchetta & Radici, P.R. D70 (04) 094032

Artru & Collins, Z.Phys. C69 (96) 277     
Boer, Jakob, Radici, P.R.D67 (03) 094003 

Jaffe, Jin, Tang, P.R.L.80 (98) 1166  
Radici, Jakob, Bianconi, P.R.D65 (02) 074031 

Bacchetta & Radici, P.R. D67 (03) 094002

Collinear factorization for dihadron production
e+e–

SIDIS PP
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electron

positron
pion

Collins, Soper, Sterman (1985) 
Collins (2011)

TMD factorization
e+e– Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)• TMD factorization is valid generically for processes with 
two measured scales Q1 << Q2. 

• Traditionally called "resummation" by CSS for cross 
sections. 

• Later put in the form of  evolution equations for TMD 
functions by Collins 11. 

• Complicated color flow makes it difficult to prove 
factorization with > 2 hadrons involved.
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lepton lepton

pion

electron

positron
pion

Collins, Soper, Sterman (1985) 
Collins (2011)

Ji, Ma, Yuan (2005) 
Collins (2011)

TMD factorization
e+e–

SIDIS

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)
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proton

lepton lepton

pion

electron

positron
pion

Collins, Soper, Sterman (1985) 
Collins (2011) 

Bacchetta, AP, (2013) for transversity

TMD evolution equations

Collins, Soper, Sterman (1985) 
Collins (2011)

Ji, Ma, Yuan (2005) 
Collins (2011)

TMD factorization
e+e–

SIDIS

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)
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proton

lepton lepton

pion

electron

positron
pion

proton

proton

pion

Collins, Soper, Sterman (1985) 
Collins (2011) 

Bacchetta, AP, (2013) for transversity

TMD evolution equations

Qiu, Sterman (1990)

Collins, Soper, Sterman (1985) 
Collins (2011)

Ji, Ma, Yuan (2005) 
Collins (2011)

Only one scale is 
measured in PP 

TMD factorization is not 
applicable?

TMD factorization
e+e–

SIDIS

PP

?

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)
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proton

lepton lepton

pion

electron

positron
pion

proton

proton

pion

Collins, Soper, Sterman (1985) 
Collins (2011) 

Bacchetta, AP, (2013) for transversity

TMD evolution equations

Qiu, Sterman (1990)

Collins, Soper, Sterman (1985) 
Collins (2011)

Ji, Ma, Yuan (2005) 
Collins (2011)

e+e–

SIDIS

PP

!

Drell-Yan

proton positron

electronprotonpion

Collins, Soper, Sterman (1985) 
Ji, Ma, Yuan (2004) 

Collins (2011)

Twist-3 factorization
DGLAP equations

Global fit is needed.
Work in progress

See talks by Daniel Pitonyak, 
Zhongbo Kang, Nobuo Sato

• Twist-3 functions are related to TMD via OPE 
• TMD and twist-3 factorizations are related in  
high QT region 
• Global analysis of  TMDs and twist-3 is possible: 
All four processes can be used. 
• Data are from HERMES, COMPASS, JLab, 
BaBar, Belle, RHIC, LHC, Fermilab

TMD factorization
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What have we learnt about transversity after 
the EIC whitepaper ?   
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TMD fits: transversity and Collins FF
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these parameters, as explained in the text.
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FIG. 6 (color online). Our best-fit results for the valence u and d quark transversity distributions atQ2 ¼ 2.4 GeV2 (left panel) and for
the lowest p⊥ moment of the favored and disfavored Collins functions at Q2 ¼ 2.4 GeV2 (central panel) and at Q2 ¼ 112 GeV2 (right
panel). The solid lines correspond to the parameters given in Table I, while the shaded areas correspond to the statistical uncertainty on
these parameters, as explained in the text.
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FIG. 27. (a) Comparison of extracted transversity (solid lines and shaded region) Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).
(b) Comparison of extracted transversity (solid lines and shaded region) at Q2 = 2.4 GeV2 with Pavia 2015 extraction [18]
(shaded region).
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
2013 extraction [17] (dashed lines and shaded region).

much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with
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FIG. 28. Comparison of extracted Collins fragmentation functions (solid lines) at Q2 = 2.4 GeV2 with Torino-Cagliari-JLab
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much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge
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transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
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the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
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Tensor charge

Q2 = 10 GeV2
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FIG. 29. Comparison of tensor charge δq[0.0065,0.35] for u-quark and d-quark from this paper at 68% C.L. (Kang et al 2015)
and result from Ref. [18] (Radici et al 2015) at 68% C.L. Both results are at Q2 = 10 GeV2.
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FIG. 30. Comparison of tensor charge δq[0,1] for u-quark and d-quark in the whole region of x from this paper at 90% C.L.
(Kang et al 2015) at Q2 = 10 GeV2 and result from Ref. [18] (Radici et al 2015) at at 68% C.L. and Q2 = 1 GeV2, and Ref. [17]
at 95% C.L. standard and polynomial fit (Anselmino et al 2013) at Q2 = 0.8 GeV2.

respect to evolution effects that are included in phenomenological extractions. It also means that phenomenological
results of Ref. [17] and other extractions without TMD evolution are valid phenomenologically. One should remember,
of course, that TMD evolution is more complicated if compared to DGLAP evolution (even though formal solutions
are simpler in TMD case). The usage of non perturbative kernels make it very important to actually demonstrate
that the proper evolution is indeed exhibited by the experimental data. Once correct evolution and non perturbative
Sudakov factor are established the results of Ref. [17] should be improved by utilizing the appropriate TMD evolution
that we have formulated in this paper.
In Fig. 31 we compare tensor charge δq[0,1] for u and d-quarks from this paper at 90% C.L. at Q2 = 10 GeV2

and results from various model estimates of Refs. [112–116]. One can see that our results are close to results of
Ref. [113] that actually used the approximate mass degeneracy of the light axial vector mesons (a1(1260), b1(1235)
and h1(1170)) and pole dominance to calculate the tensor charge. DSE calculations of tensor charge of Ref. [112] are
also close to our results.
Finally we present our estimates for the isovector nucleon tensor charge gT = δu − δd:

gT = +0.61+0.26
−0.51 , (155)

at 90% C.L. and

gT = +0.61+0.15
−0.25 , (156)

at 68% C.L.at Q2 = 10 GeV2. This result can be compared to lattice QCD calculations.
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at best be explored only on a qualitative level. Existing fa-
cilities either suffer from a much too restricted kinematic
coverage or from low luminosity or from both.

The SIDIS measurement discussed below is the nec-
essary method to access TMDs. We define two planes in
SIDIS: the lepton plane and the hadron plane, as shown
in fig. 15, which allows us to study different angular de-
pendences in the hadron production cross-sections. These
angular distributions are important to extract the TMDs
since each of them has a unique angular dependence. Pre-
cision measurements of the various angular modulations
are only possible with a comprehensive and hermetic de-
tector. With such a detector and the EIC’s ability to pro-
vide a wide kinematic range and high luminosity, we see
the following opportunities for measurements at an EIC
that would be impossible in current experiments:

– high precision quantitative measurements of all the
quark TMDs in the valence region, with the ability
to go to sufficiently large values of Q2 in order to sup-
press potential higher twist contaminations;

– first-ever measurements of the TMDs for anti-quarks
and gluons;

– multi-dimensional representations of the observables
leading to TMDs;

– systematic studies of perturbative QCD techniques
(for polarization observables) and studies of QCD evo-
lution properties of TMDs;

– the transition between the non-perturbative low
transverse-momentum region and perturbative high
transverse-momentum region for both polarized and
unpolarized collisions due to a wide range of kinematic
coverage.

The above discussions apply to all of the eight TMD
quark distributions listed in fig. 16. The rich physics cov-
ered by the TMD quark and gluon distribution functions
can be thoroughly investigated at the EIC with a dedi-
cated detector. In the following subsections, we will take
semi-inclusive DIS as an example for the quark Sivers
function and di-hadron production for the gluon Sivers
function and highlight the impact the EIC could have on
these measurements.

Semi-inclusive Deep Inelastic Scattering

The TMDs are measured using SIDIS processes. In
such reactions, the hadron, which results from the frag-
mentation of a scattered quark, “remembers” the original
motion of the quark, including its transverse momentum.
SIDIS depends on six kinematic variables. In addition to
the variables for inclusive DIS, x, y = (P ·q)/(P ·l), and the
azimuthal angle φS describing the orientation of the tar-
get spin vector for transverse polarization, one has three
variables for the final state hadron, which we denote by
z = (P ·Ph)/(P · q) (longitudinal hadron momentum frac-
tion), PhT (magnitude of transverse hadron momentum),
and the angle φh for the orientation of PhT (see fig. 15). In
the one-photon exchange approximation, the SIDIS cross-
section can be decomposed in terms of structure functions.
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Fig. 18. Kinematic coverage in x and Q2 for the EIC com-
pared to the coverage of the planned JLab12 experiment. The
kinematics of the existing experimental measurements are also
shown for comparison.

Each of them is characterized by the unique azimuthal
angular modulation in the differential cross-sections. The
extraction of these structure functions will give access to
all of the leading TMD quark distributions listed in fig. 16.

For example, for the spin-average and single-spin-
dependent contributions, we have

dσ

dxdy dφS dz dφh dP 2
hT

∝

FUU,T + |S⊥| sin(φh − φS)F sin(φh−φS)
UT,T + . . . , (13)

where FUU represents the spin-average structure func-
tion depending on the unpolarized quark distribution
fq
1 (x, kT ), and FUT depends on the quark Sivers function

f⊥q
1T (x, kT ). For TMD studies, one is interested in the kine-

matic region defined by PhT ≪ Q, for which the struc-
ture functions can be written as certain convolutions of
TMDs. To extract the quark Sivers function, we measure
the sin(φh − φs) modulation of the single-transverse-spin
asymmetry (SSA), which is defined by the ratio of the two
cross-section terms in eq. (13). This asymmetry depends
on four kinematics: Q2, xB , zh, PhT . A systematic and de-
tailed study of the Sivers function, and TMDs in general,
can only be performed on the basis of precise spin and
azimuthal asymmetry amplitude measurements in SIDIS
over a wide kinematic range. In fig. 18, we compare the
x-Q2 coverage of the HERMES, COMPASS, and JLab
12GeV upgrade with the coverage of an EIC. The wide
kinematic coverage puts the EIC in the unique position
of accessing the valence region at much larger Q2 than
current and near-future experiments while also accessing
low-x down to values of about 10−5, where sea quarks and
gluons could be studied in detail. The expected high lumi-
nosity will also allow for a fully differential analysis over
almost the entire kinematic range of x, Q2, z and PhT ,
which is vital for phenomenological analyses.
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• Electron beam: 11GeV and 8.8 GeV 
• Targets: neutron (3He) and proton (NH3) 
• Luminosity: ~ 1036 n cm-2 s-1, 1035 p cm-2 s-1 

• Polar angle: 8˚ ~ 24˚ 
• Azimuthal angle: full 2π coverage 
• In beam polarization: ~60% (3He), ~70% (NH3) 
• 4D bins with high precision
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W’ > 1.6 GeV 
Q2 > 1.0 GeV2

11GeV 8.8GeV

Ye et al arXiv:1609.02449 (2016)
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Ye et al arXiv:1609.02449 (2016)

Current knowledge Knowledge after SoLID

Bayesian statistics is used to estimate the improvement from new data 
Current knowledge corresponds to a fit with TMD evolution Kang et al., P.R. D93 (16) 014009
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Kinematical coverage of  SoLID
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Only combination of  proton and neutron target measurements  
will ensure similar improvement for both u and d quark transversities
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“full” is contribution from 0 < x < 1 region 
“truncated” is contribution from 0.05 < x < 0.6
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gT = �u� �d isovector tensor charge

• Order of  magnitude improvement is expected 
• Truncated result is more reliable as no  
   extrapolation is used 
• Comparable with lattice QCD precision 
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“full” is contribution from 0 < x < 1 region 
“truncated” is contribution from 0.05 < x < 0.6

gT = �u� �d isovector tensor charge

• Order of  magnitude improvement is expected 
• Truncated result is more reliable as no  
   extrapolation is used 
• Comparable with lattice QCD precision

• Sea quark transversity is neglected 
• Extrapolation can be unreliable in the region 
   where data are not present 

• Contribution from low-x region can be  
    substantial: ~20% of  tensor charge 

Radici et al (2015)

Ye et al arXiv:1609.02449 (2016)
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Figure 4. The up (left) and down (right) valence transversities coming from the present analysis
evolved to Q2

= 2.4 GeV2. From top row to bottom, results with the rigid, flexible, and extra-flexible
scenarios are shown, respectively. The dark thick solid lines are the Soffer bound. The uncertainty
band with solid boundaries is the best fit in the standard approach at 1�, whose central value is
given by the central thick solid line. The uncertainty band with dashed boundaries is the 68% of
all fitting replicas obtained in the Monte Carlo approach. As a comparison, the uncertainty band
with short-dashed boundaries is the transversity extraction from the Collins effect [15].

is likely to be significantly violated at a lower scale [46]. Therefore, if we want to maintain
the validity of the Soffer bound at Q2 < 1 GeV2, we would expect transversity to be clearly
below the Soffer bound at Q2 � 1 GeV2. In fact, in our analysis with the Monte Carlo
approach there are a few replicas that do not saturate the Soffer bound. They fall outside
the 68% band drawn in the figure, but they are still compatible with the data due to the
large experimental error bars (this is true in particular for the deuteron bins number 7 and

– 15 –

lattice
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RHIC: the  process  p + p↑ → π + X  See talk by Daniel Pitonyak

Twist-3 factorization, fragmentation contributions

Integration over x for transversity, conservation of  momenta  
in ab→cd:

Kanazawa, Koike, Metz, Pitonyak 
(2014)

2. The Qiu-Sterman and fragmentation contributions to p" p! ⇡ X

We consider TSSAs in the single-inclusive production of pions from proton-proton collision,

p(P, SP) + p(P0)! ⇡(Ph) + X , (3)

where we have indicated the momenta and polarizations of the particles. We also define the Mandelstam variables
S ,T,U as

S = (P + P0)2 , T = (P � Ph)2 , U = (P0 � Ph)2 . (4)

All three terms in Eq. (1) enter into the analysis. However, as stated in the Introduction, we will focus on the qgq SGP
(QS) piece of the first term and the third (fragmentation) term. The definitions of the relevant functions can be found
in Refs. [1, 25]. First, we give the expression for the QS term, which reads [6, 8]

Ehd�QS(S P)
d3~Ph

= �4↵2
S M
S
✏P
0PPhS P

X

i

X

a,b,c

Z 1

0

dz
z3

Z 1

0
dx0
Z 1

0
dx �(ŝ + t̂ + û)

⇥ ⇡
ŝû

f b
1 (x0) D⇡/c1 (z)

"
Fa

FT (x, x) � x
dFa

FT (x, x)
dx

#
S i

FFT
, (5)

where
P

i is a sum over all partonic interaction channels, M is the proton mass, ↵s = g2/4⇡ with g the strong coupling,
f1 (D1) is the standard twist-2 unpolarized PDF (FF), and the Levi-Civita tensor is defined with ✏0123 = +1. We have
also made explicit that parton c fragments into a pion. The hard factors are denoted by S i

FFT
and can be found in

Appendix A of Ref. [8]. They are functions of the partonic Mandelstam variables ŝ = xx0S , t̂ = xT/z, and û = x0U/z.
One also has an identity that relates the QS function to the first kT -moment of the Sivers function [44],

⇡Fq
FT (x, x) = f?(1),q

1T (x)
���
S IDIS = � f?(1),q

1T (x)
���
DY . (6)

where

f?(1),q
1T (x) ⌘

Z
d2~kT

~k2
T

2M2 f?1T (x,~k2
T ) . (7)

In Eq. (6) we have indicated that the Sivers function is either the one extracted from semi-inclusive deep-inelastic
scattering (SIDIS) or Drell-Yan (DY).

Next, we look at the fragmentation term, which was first fully calculated in Ref. [21] and reads

Ehd�Frag(S P)
d3~Ph

= �4↵2
s Mh

S
✏P
0PPhS P

X

i

X

a,b,c

Z 1

0

dz
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Z 1

0
dx0
Z 1

0
dx �(ŝ + t̂ + û)

⇥ 1
ŝ (�x0 t̂ � xû)

ha
1(x) f b

1 (x0)

8>><
>>:

2
666664H
?(1),⇡/c
1 (z) � z

dH?(1),⇡/c
1 (z)

dz

3
777775 S

i
H?1
+

1
z

H⇡/c(z) S i
H

+
2
z

Z 1

z

dz1

z2
1

1
⇣

1
z � 1

z1

⌘2 Ĥ⇡/c,=FU (z, z1) S i
ĤFU

)
, (8)

where Mh is the pion mass, and h1 is the standard twist-2 transversity PDF. The hard factors for each term are
represented by S i and can be found in Appendix A of Ref. [21].5

The functions H?(1)
1 (z), H(z), and Ĥ=FU(z, z1) are the kinematical, intrinsic, and dynamical, respectively, unpolar-

ized twist-3 FFs discussed in the Introduction. In particular, H?(1)
1 (z) is the first p?-moment of the Collins function,

defined as

H?(1),q
1 (z) ⌘ z2

Z
d2~p?

~p 2?
2M2

h

H?,q1 (z, z2~p 2
?) . (9)

5Note that in Ref. [21], Ĥ(z) ⌘ H?(1)
1 (z).
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function, respectively, that have been extracted from TMD processes [54, 55, 65–71]. That is, we will not consider the
piece in (15) involving the dynamical function Ĥ=FU(z, z1) (via H̃(z)). We emphasize that Ĥ=FU(z, z1) must be nonzero
because the authors of Ref. [25] showed that Ĥ=FU(z, z1) = 0 implies H?(1)

1 (z) = 0, and, consequently, Eq. (15) would
vanish identically. Moreover, we know from current extractions of the Collins function that H?(1)

1 (z) , 0. Therefore,
the purpose of this computation is not to o↵er a complete analysis of AN but to use recent, TMD evolved extractions
of known (kinematical) inputs to the observable, along with a new constraint from the LIR (14), to assess how well we
are currently able to describe the data and ascertain what contribution remains from the dynamical functions. This will
help guide a future fit of these correlators, in particular Ĥ=FU(z, z1) (or H̃(z)). This function was originally extracted in
Ref. [53] before the LIR (14) was derived, and, therefore, that work must be updated to include this constraint.

From Eq. (2), we are able to calculate AN as

AN =
d�Nun

d�Den
, (28)

where the numerator d�Nun and denominator d�Den are given, respectively, by

d�Num = 2PhT

Z 1

zmin

dz
z3

Z 1

xmin

dx
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1
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1
xS + U/z

1
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f b
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X
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h
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1(x)H⇡/c,i(x, x0, z)
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M
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, (29)
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X
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X
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dz
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Z 1
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dx
x

1
x0

1
xS + U/z

f a
1 (x) f b

1 (x0) D⇡/c1 (z) S i
U , (30)

where zmin = �(T + U)/S , xmin = �(U/z)/(T/z + S ), x0 = �(xT/z)/(xS + U/z), and S i
U are the hard factors for

the unpolarized cross section, which can be found in, e.g., in Appendix A of Ref. [8]. In Eq. (29), the quantities
H⇡/c,i(x, x0, z) and F a,i(x, x0, z) are given by

H⇡/c,i(x, x0, z) =
2
666664H
?(1),⇡/c
1 (z) � z

dH?(1),⇡/c
1 (z)

dz

3
777775 S̃
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F a,i(x, x0, z) =
2
666664 f
?(1),a
1T (x) � x

d f?(1),a
1T (x)

dx

3
777775 S

i
FFT
. (32)

As mentioned above, we will ignore H̃(z) and compute the terms in Eqs. (31), (32) that involve f?(1)
1T (x) and

H?(1)
1 (z), using the latest fits of those functions that incorporate TMD evolution. In particular, we employ the Sivers

function obtained in Ref. [69] and the Collins function (and transversity TMD) extracted in Ref. [71] along with the
formulae in Eqs. (7), (9). [Insert a statement here on what is done with the evolution]. We also generate an error
band for AN based on the uncertainty in these TMD functions, which especially is relevant in the large-xF region
where these functions are not well-constrained. In Fig. [FIG], we give the result of our calculation compared with
the BRAHMS charged pion and STAR neutral pion data for AN vs. xF [32, 34, 35, 38]). Notice that the Sivers-type
QS contribution is basically negligible, and the entire asymmetry is due to the fragmentation piece. This confirms
the original findings in Ref. [53]. Note also from Fig. [FIG] that using TMD evolved functions does not cause the
asymmetry to di↵er significantly from the result where the functions only undergo a DGLAP-type evolution (i.e., only
the collinear unpolarized PDF in the parameterization evolves). We also give our result for AN vs. PhT in Fig. [FIG]
compared with the STAR data from Ref. [72].

We see that, although they undershoot or overshoot AN in some places, the theoretical curves do a reasonable job
at describing the data. We are especially encouraged by these plots given that the contribution from H̃(z) still needs
to be included, which, moreover, clearly demonstrates that this function must be nonzero. Through this computation,
we now have a constraint on H̃(z) and leave a fit of this function to AN data for future work. We emphasize again that
this correlator also enters the Asin �S

UT asymmetry in SIDIS and e+e� ! ha hb X.
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help guide a future fit of these correlators, in particular Ĥ=FU(z, z1) (or H̃(z)). This function was originally extracted in
Ref. [53] before the LIR (14) was derived, and, therefore, that work must be updated to include this constraint.

From Eq. (2), we are able to calculate AN as

AN =
d�Nun

d�Den
, (28)

where the numerator d�Nun and denominator d�Den are given, respectively, by

d�Num = 2PhT

Z 1

zmin

dz
z3

Z 1

xmin

dx
x

1
x0

1
xS + U/z

1
ŝ
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RHIC data is sensitive to high-x behavior of  transversity 
quark-gluon channel is dominant contribution for large xF 

More complicated structure of  cross-section, additional functions 
to study

for f⊥1T are mainly distinct by their quite different large-x
behavior. To compute the contribution in (3), we take h1
and H⊥

1 [which fixes Ĥ through (4)] from [33]. For favored
fragmentation into πþ, we make for Ĥℑ

FU the ansatz

Ĥπþ=ðu;d̄Þ;ℑ
FU ðz; z1Þ

Dπþ=ðu;d̄ÞðzÞDπþ=ðu;d̄Þðz=z1Þ

¼ Nfav

2IfavJfav
zαfavðz=z1Þα

0
favð1 − zÞβfavð1 − z=z1Þβ

0
fav ; ð6Þ

with the parameters Nfav, αfav, α0fav, βfav, β0fav, and the
unpolarized FF D. Note that the allowed range for z and
z=z1 is [0, 1] [45] and that our ansatz satisfies the constraint
ĤFUðz; zÞ ¼ 0 [45,46]. With the use of DSS FFs [42], the
factor Ifav reads Ifav ≡ Iuþū − Iū where Ii (i ¼ uþ ū, ū) is
defined as

Ii ¼
NiðK1;fav þ γiK2;favÞ

B½2þ αi; βi þ 1& þ γiB½2þ αi; βi þ δi þ 1&
;

with K1;fav ¼ B½α0fav þ αi þ 1; β0fav þ βi&;
K2;fav ¼ B½α0fav þ αi þ 1; β0fav þ βi þ δi&; ð7Þ

and B½a; b& the Euler β function. The parameters Ni, αi, βi,
γi, and δi come fromD FFs at the initial scale and are given
in Table III of [42]. Note thatDπþ=u in Ref. [42] differs from
Dπþ=d̄. Jfav in (6) is similarly defined as Jfav ≡ Juþū − Jū,
where Ji (i ¼ uþ ū, ū) follows from Ii through
α0fav→ðαfavþ4Þ, β0fav→ðβfavþ1Þ. The factor 1=ð2IfavJfavÞ
in (6) is convenient and implies

R
1
0 dzzHπþ=u

ð3Þ ðzÞ ¼ Nfav at
the initial scale, where Hð3Þ represents the entire second
term on the right-hand side of (5). For the disfavored FFs
Ĥπþ=ðd;ūÞ;ℑ

FU we make an ansatz in full analogy to (6),
introducing the additional parameters Ndis, αdis, α0dis, βdis,
β0dis. (Idis and Jdis are calculated using Dπþ=d ¼ Dπþ=ū from
[42].) The π− FFs are then fixed through charge conjuga-
tion, and the π0 FFs are given by the average of the FFs for
πþ and π−. The FFs Hπ=q are computed by means of (5).
All parton correlation functions are evaluated at the scale
Ph⊥ with leading-order evolution of the collinear functions.
Using the MINUIT package, we fit the fragmentation

contribution to data for Aπ0
N [35–37] and Aπ'

N [38]. To
facilitate the fit, we only keep seven parameters in Ĥπþ=q;ℑ

FU
free. We also allow the β-parameters βTu ¼ βTd of the
transversity to vary within the error range given in [33].
All integrations are done using the Gauss-Legendre method
with 250 steps.
For the SV1 input, the result of our eight-parameter fit is

shown in Table I. Note that the values for β0fav ¼ β0dis and
βfav are at their lower limits, which we introduce to
guarantee a finite integration upon z1 in (3) and a proper
behavior of AN at large xF, respectively. For the SV2 input,

the values of the fit parameters are similar, with an equally
successful fit (χ2=d:o:f: ¼ 1.10).
The very good description of AN is also reflected by

Fig. 1. We emphasize that such a positive outcome is
nontrivial if one keeps in mind the constraint in (5) and the
need to simultaneously fit data for Aπ0

N and Aπ'
N . Results for

the FFs Hπþ=q and ~Hπþ=q
FU ≡ R∞

z
dz1
z21

1
1
z−

1
z1

1
ξ Ĥ

πþ=q;ℑ
FU ðz; z1Þ are

displayed in Fig. 2. In either case, the favored and
disfavored FFs have opposite signs. This is like for
H⊥

1 where such reversed signs are actually “preferred”
by the Schäfer-Teryaev (ST) sum rule

P
h
P

Sh ×R
1
0 dzzMhĤh=qðzÞ ¼ 0 [47]. Note that the ST sum rule,
in combination with (5), implies a constraint on a certain
linear combination of Hh=q and (an integral of) Ĥh=q;ℑ

FU . In
view of that, reversed signs between favored and disfavored
FFs like in Fig. 2 are actually beneficial. Also depicted in

TABLE I. Fit parameters for SV1 input.

χ2=d:o:f: ¼ 1.03

Nfav ¼ −0.0338 Ndis ¼ 0.216
αfav ¼ α0fav ¼ −0.198 βfav ¼ 0.0
β0fav ¼ β0dis ¼ −0.180 αdis ¼ α0dis ¼ 3.99
βdis ¼ 3.34 βTu ¼ βTd ¼ 1.10
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FIG. 1 (color online). Fit results for Aπ0
N (data from [35–37]) and

Aπ'
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FU switched off.

TOWARDS AN EXPLANATION OF TRANSVERSE SINGLE- … PHYSICAL REVIEW D 89, 111501(R) (2014)

111501-3

RAPID COMMUNICATIONS

Improving errors in large-x 
region?

Analysis in progress.



31

3

of the nucleon tensor charge �q =
R 1
0 dx(hq

1(x) � hq̄
1(x))

will directly test our theory of quantum chromodynam-
ics (QCD) when compared to calculations on the lat-
tice or model calculations [2–11]. h1 becomes acces-
sible in physics observables when it is coupled with an
additional chiral-odd partner, e.g. a transverse spin-
dependent fragmentation process. This second part has
to be measured independently in order to extract h1.
Our current knowledge of h1 [2, 4] is based on fixed-
target semi-inclusive deep inelastic lepton-nucleon scat-
tering (SIDIS) [12–16] in combination with data from
electron-positron annihilation [17, 18]. Proton-proton
collisions allow us to reach into the dominant valence
quark region, but the framework of perturbative QCD
introduces complications when the intrinsic transverse
momentum from the hadronization process has to be
considered [19]. It has been shown that di-hadron cor-
relations in the final state persist when integrated over
intrinsic transverse momenta. This so-called Interfer-
ence Fragmentation Function (IFF), H^

1 , can therefore
be described collinearly [20]. Therefore the contributions
to the cross section can be factorized [21] and the IFF
should be universal between electron-positron annihila-
tion, SIDIS, and proton-proton scattering.

We present measurements of charged pion correlations
from the STAR experiment at the Relativistic Heavy
Ion Collider (RHIC) at a center-of-mass energy

p
s =

200 GeV. The data, the first measurement of transver-
sity in polarized proton collisions, show non-zero hq

1(x)
at 0.15 < x < 0.30. In this range, transversity is not well
constrained by previous SIDIS measurements and our re-
sult will be particularly important to restrict the d-quark
transversity which is charge suppressed in lepton-proton
scattering.

RHIC, located at Brookhaven National Laboratory,
collides bunched beams of heavy ions as well as polar-
ized protons. The stable beam polarization orientation
is transverse to the collider plane and the polarization
direction alternates between subsequent bunches or pairs
thereof (polarization up " or down #). The bunch po-
larization pattern is changed from fill to fill in order to
reduce systematic e↵ects. While typically both beams
are polarized, a single-spin measurement is achieved by
summing over the bunches in one beam, e↵ectively re-
ducing its polarization to near zero. The polarization of
each beam is measured by polarimeters using the elastic
scattering of protons on very thin carbon targets, several
times during a RHIC fill. The polarimeter are calibrated
using a polarized hydrogen gas jet target [22]. We report
results from the RHIC run in 2006 with an integrated
luminosity of 1.8 pb�1 and an average beam polarization
of about 60%.

The STAR experiment is located at one of the colli-
sion points in RHIC. This analysis is based on data in
the central pseudorapidity range �1 < ⌘ < 1. Data are
collected by the Time Projection Chamber (TPC) pro-

viding tracking and charged pion identification [23] and
by the Barrel Electromagnetic Calorimeter (BEMC), a
lead scintillator sampling calorimeter [24]. Data from a
pair of scintillator-based beam-beam counters (BBC) at
forward rapidities 3.3 < |⌘| < 5.0 in combination with
the BEMC provides a trigger for hard QCD events [25].
The trigger requires a coincidence between the BBCs and
either a minimum transverse energy, ET > 5 GeV in a
single BEMC tower or one of several jet patch triggers in
��⇥�⌘ = 1.0⇥ 1.0 (ET > 4.0 or 7.8 GeV).
Charged pion pairs are selected by requiring tracks

that originate within ±60 cm in the longitudinal direc-
tion and 1 cm in the transverse direction from the nomi-
nal interaction vertex and that are required to point into
the central region. Tracks are required to have a min-
imum transverse momentum pT of 1.5 GeV/c. Using
dE/dx measurements in the TPC to select pions, a pu-
rity of the single pion sample of greater than 95% over
the whole kinematic range is achieved. All pion pairs in
an event are considered where the pions are close enough
in (⌘,�) space to originate from the fragmentation of the
same parton. The default value of this opening angle
cut is

p
(⌘⇡1 � ⌘⇡2)

2 + (�⇡1 � �⇡2)
2 < 0.3. Pion pairs

produced in the weak decay of the K0 meson are not ex-
pected to contribute to the asymmetry, therefore the cor-
responding mass range (497.6 ± 10 MeV) was excluded
from the analysis.
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FIG. 1. Azimuthal angle defintions in the dihadron system. ~s
a

is the direction of the spin of the polarized proton, ~p
h,{1,2} are

the momenta of the positive and negative pion, respectively
and �

R

is the angle between the production and dihadron
plane.

The transversely polarized cross-section of hadron
pairs in p" + p collisions can be written similar to [26]:

d�UT / sin(�RS)

Z
dxadxbf1(xa)h1(xb)

d��̂

dt̂
H^

1,q(z,M).

(1)

pA

SBT

 P
R

  pB

p1

p2

RHIC: the  process  p + p↑ → (π π) + X  

 dσ ~ dσ0 + sin(ΦS-ΦR) dσUT

Bacchetta & Radici,  
P.R. D70 (04) 094032

Assuming universality of  functions for this process

In Fig. 3, the asymmetry is shown as function of η
when integrated on 3 ≤ jPT j ≤ 13 GeV=c and 0.3 ≤ Mh ≤
1.2 GeV.1 Similarly to the previous figure, for each
experimental η point the theoretical result is integrated in
the corresponding bin. Positive pseudorapidities corre-
spond to backward-propagating transversely polarized
particles: the asymmetry is dominated by the contribution
of transversely polarized partons with low xb, the trans-
versity is less important, and the resulting asymmetry is
largely suppressed. The agreement with data is very good
even though the theoretical band is very narrow. This
feature is determined by the assumptions adopted in the
analysis of ðπþπ−Þ SIDIS data: the low-x behaviour of
transversity cannot be fixed yet by the current fixed-target
data, and it is imposed by hand to grant that the resulting
tensor charge is finite [15,18]. At η < 0, as explained above
the asymmetry is larger because it is dominated by the
valence components of transversity. Here, the situation is
less satisfactory: the 68% band of computed replicas starts
to deviate from the experimental points. We recall that Dg

1,
the gluon channel in di-hadron fragmentation, is poorly
constrained: no data of unpolarized cross sections for the
semi-inclusive ðπþπ−Þ production are available either in
eþe− annihilations or in pp collisions. TheDg

1 contribution
is currently determined only through QCD evolution. It
might also happen that higher-order QCD corrections to
dσ0 are large, whereas it is not the case for the numerator of
AUT because there is no gluon transversity. This lack of
information could be responsible for the discrepancy in
Fig. 3. In any case, it points out that the uncertainty band

could be larger than the indicated one, paradoxically
improving the compatibility with data.
We complete the discussion about the results in Fig. 3 by

observing that some of the replicas lying outside the 68%
band are close to the data points in the η < 0 region. A few
examples are shown in Fig. 3, where the solid (red) line
refers to the result of replica 6 for AUT, the dashed (blue)
line to replica 31, and the dot-dashed (red) line to replica
43. These replicas 6, 31, and 43 do not belong to the 68%
band of replicas that fit the SIDIS data, although their χ2 per
degree of freedom is still reasonably low: 2.04, 1.52, and
2.02, respectively [18]. Moreover, they share a very
peculiar feature, as will be clear in the following.
In Fig. 4, we show the uncertainty band for the 68% of all

replicas of the valence down transversity xhdv1 as a function
of x at Q2 ¼ 2.4 GeV2, that fit the SIDIS data for semi-
inclusive production of ðπþπ−Þ pairs on transversely
polarized proton and deuteron targets. The dark solid lines
with no labels represent the upper and lower limits of the
Soffer bound. The plot corresponds to the darker band with
solid borders in the right panel of Fig. 8 in Ref. [18]. The
replicas in the band tend to saturate the lower limit of the
Soffer bound because they are driven by the COMPASS
deuteron data, in particular by the seventh and eighth bins
in Ref. [18]. The light (red) solid line with label 6
reproduces the transversity from the corresponding replica.
Similarly, the dashed (blue) line refers to replica 31, while
the dot-dashed (red) line to replica 43.
Their trajectories do not follow the trend of the 68% band

at large x. Rather, they deviate towards the upper Soffer
bound and they saturate it. Hence, at large x≳ 0.1 there
seems to be a tension between the COMPASS deuteron data

FIG. 3. The asymmetry AUT as a function of pseudorapidity η,
integrated over Mh and jPT j. Forward kinematics corresponds to
negative η. Solid (red) line for replica 6 of AUT , dashed (blue) line
for replica 31, dot-dashed (red) line for replica 43. Further
notation and conventions as in the previous figure.

FIG. 4. The valence down transversity xhdv1 as a function of x at
Q2 ¼ 2.4 GeV2. The uncertainty band refers to the 68% of
replicas that fit the ðπþπ−Þ SIDIS data off transversely polarized
proton and deuteron targets with the flexible parametrization and
αsðM2

ZÞ ¼ 0.139 [18]. Dark (blue) solid lines with no label for the
upper and lower limits of the Soffer bound. Light (red) solid line
for the transversity from replica 6, dashed (blue) line for replica
31, dot-dashed (red) line for replica 43.

1The indicated Mh range does not overlap with the STAR
experimental bins at the largest Mh [6] because the assumptions
behind the parametrization of the Mh dependence of DiFFs are
valid only up to Mh ≈ 1.2 GeV [15].
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since there are explicit counterexamples showing that TMD
factorization is broken in this case [23]. On the contrary, the
case of di-hadron production can be analyzed using a
collinear factorization framework, which can be applied
also in hadronic collisions. This allows us to study trans-
versity in a process different from SIDIS and explore its
universality.
In the following, we take our parametrizations of h1 and

H∢
1 , obtained by fitting SIDIS and eþe− data, and we

compute the relevant transverse spin azimuthal asymmetry
for semi-inclusive ðπþπ−Þ production in proton-proton
collisions. Then, we compare our predictions with the
STAR data. In spite of some limitations in our estimate (in
particular, we include only valence quarks because these
are the only components of transversity that can be
extracted from the current fixed-target SIDIS data), we
obtain an asymmetry with the same sign of the exper-
imental one, and whose size and shape are in reasonable
agreement with experimental measurements. This is an
important achievement because it gives us confidence in the
reliability of the framework and opens a unique opportunity
to use hadronic collisions data for the extraction of trans-
versity based on the di-hadron collinear mechanism.
We consider the process pA þ p↑

B → ðh1h2Þ þ X where
a proton with momentum pA collides with a transversely
polarized proton pB with spin vector SB, and two unpo-
larized hadrons h1 and h2 (with momenta p1 and p2 and
masses M1 and M2, respectively) are inclusively detected
inside the same jet. We define the pair total momentum
P ¼ p1 þ p2 and relative momentum R ¼ ðp1 − p2Þ=2;
the pair invariant mass is M2

h ¼ P2. Since we work in a
collinear framework, we integrate over the intrinsic trans-
verse components of P with respect to the jet axis. The
components of P perpendicular to the beam (defined by pA)
are indicated by PT. We identify the reaction plane as the
plane formed by pA and P. All azimuthal angles are
measured with respect to this plane (see Fig. 1 and
Ref. [4] for a formal definition). The most relevant angles
are ϕS, the azimuthal angle of the polarization vector SB,
and ϕR, which describes the azimuthal orientation around P
of the plane containing the hadron pair momenta p1 and p2
(see Fig. 1). The modulus jPT j is the hard scale of the
process. Hence, we assume that jPT j ≫ Mh;M1;M2, and
we perform our analysis at leading order in 1=jPT j. The
differential cross section reads [4]

dσ
dηdjPT jdMhdϕRdϕS

¼ dσ0ð1þ sinðϕS − ϕRÞAUTÞ; ð1Þ

where dσ0 is the unpolarized cross section,

dσ0

dηdjPT jdMh
¼ 2jPT j

X

a;b;c;d

Z
dxadxb
4π2z̄

× fa1ðxaÞfb1ðxbÞ
dσ̂ab→cd

dt̂
Dc

1ðz̄;MhÞ; ð2Þ

and the transverse spin asymmetry AUT is given by

AUTðη;jPT j;MhÞ¼
jSBT j2jPT j

dσ0
jRT j
Mh

X

a;b;c;d

Z
dxadxb
16πz̄

×fa1ðxaÞhb1ðxbÞ
dΔσ̂ab↑→c↑d

dt̂
H∢c

1 ðz̄;MhÞ:

ð3Þ

The pseudorapidity η of the hadron pair is defined with
respect to the beam momentum pA. Hence, forward
transversely polarized particles are associated to negative
pseudorapidities. Experimental data have been presented
with the opposite choice [6]. In Eq. (2), the elementary
cross section dσ̂ describes the annihilation of partons a and
b (carrying fractional momenta xa and xb, respectively) into
the partons c and d. The inclusive decay of parton c into the
detected hadron pair is described by the unpolarized DiFF
Dc

1, that depends on the parton fractional energy z carried
by the hadron pair and on the invariant massMh of the pair
itself. Similarly, in Eq. (3) the cross section dΔσ̂ describes
the transfer of polarization in the elementary annihilation
when parton b↑ is transversely polarized. As previously
mentioned, the inclusive fragmentation of the transversely
polarized parton c↑ is described by H∢c

1 . From both SIDIS
and eþe− data, a specific component ofH∢

1 is extracted that
corresponds to the ðπþπ−Þ pair being produced in a state
with mismatch in relative orbital angular momentum
jΔLj ¼ 1; i.e., it corresponds to the interference between
the amplitudes for the decay into a pair with relative swave
or p wave [9]. Accordingly, this component is usually
named interference fragmentation function (IFF) [7]. Since
in this context there is no ambiguity, in the following we
will keep denoting it as H∢

1 .

FIG. 1. Kinematics for the collision of a proton with momen-
tum pA and a tranversely polarized proton with momentum
pB and spin vector SBT. The final state is represented by the
inclusive production of two hadrons with total and relative
momenta P ¼ p1 þ p2 and R ¼ p1 − p2, forming a plane oriented
with the azimuthal angle ϕR with respect to the reaction plane
formed by pA and P.
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STAR data vs replicas in Pavia fit

some replicas outside the 68% band from SIDIS fit  
show compatibility with p-p data in forward kinematics
Radici et al, P.R. D94 (16) 034032
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of the nucleon tensor charge �q =
R 1
0 dx(hq

1(x) � hq̄
1(x))

will directly test our theory of quantum chromodynam-
ics (QCD) when compared to calculations on the lat-
tice or model calculations [2–11]. h1 becomes acces-
sible in physics observables when it is coupled with an
additional chiral-odd partner, e.g. a transverse spin-
dependent fragmentation process. This second part has
to be measured independently in order to extract h1.
Our current knowledge of h1 [2, 4] is based on fixed-
target semi-inclusive deep inelastic lepton-nucleon scat-
tering (SIDIS) [12–16] in combination with data from
electron-positron annihilation [17, 18]. Proton-proton
collisions allow us to reach into the dominant valence
quark region, but the framework of perturbative QCD
introduces complications when the intrinsic transverse
momentum from the hadronization process has to be
considered [19]. It has been shown that di-hadron cor-
relations in the final state persist when integrated over
intrinsic transverse momenta. This so-called Interfer-
ence Fragmentation Function (IFF), H^

1 , can therefore
be described collinearly [20]. Therefore the contributions
to the cross section can be factorized [21] and the IFF
should be universal between electron-positron annihila-
tion, SIDIS, and proton-proton scattering.

We present measurements of charged pion correlations
from the STAR experiment at the Relativistic Heavy
Ion Collider (RHIC) at a center-of-mass energy

p
s =

200 GeV. The data, the first measurement of transver-
sity in polarized proton collisions, show non-zero hq

1(x)
at 0.15 < x < 0.30. In this range, transversity is not well
constrained by previous SIDIS measurements and our re-
sult will be particularly important to restrict the d-quark
transversity which is charge suppressed in lepton-proton
scattering.

RHIC, located at Brookhaven National Laboratory,
collides bunched beams of heavy ions as well as polar-
ized protons. The stable beam polarization orientation
is transverse to the collider plane and the polarization
direction alternates between subsequent bunches or pairs
thereof (polarization up " or down #). The bunch po-
larization pattern is changed from fill to fill in order to
reduce systematic e↵ects. While typically both beams
are polarized, a single-spin measurement is achieved by
summing over the bunches in one beam, e↵ectively re-
ducing its polarization to near zero. The polarization of
each beam is measured by polarimeters using the elastic
scattering of protons on very thin carbon targets, several
times during a RHIC fill. The polarimeter are calibrated
using a polarized hydrogen gas jet target [22]. We report
results from the RHIC run in 2006 with an integrated
luminosity of 1.8 pb�1 and an average beam polarization
of about 60%.

The STAR experiment is located at one of the colli-
sion points in RHIC. This analysis is based on data in
the central pseudorapidity range �1 < ⌘ < 1. Data are
collected by the Time Projection Chamber (TPC) pro-

viding tracking and charged pion identification [23] and
by the Barrel Electromagnetic Calorimeter (BEMC), a
lead scintillator sampling calorimeter [24]. Data from a
pair of scintillator-based beam-beam counters (BBC) at
forward rapidities 3.3 < |⌘| < 5.0 in combination with
the BEMC provides a trigger for hard QCD events [25].
The trigger requires a coincidence between the BBCs and
either a minimum transverse energy, ET > 5 GeV in a
single BEMC tower or one of several jet patch triggers in
��⇥�⌘ = 1.0⇥ 1.0 (ET > 4.0 or 7.8 GeV).
Charged pion pairs are selected by requiring tracks

that originate within ±60 cm in the longitudinal direc-
tion and 1 cm in the transverse direction from the nomi-
nal interaction vertex and that are required to point into
the central region. Tracks are required to have a min-
imum transverse momentum pT of 1.5 GeV/c. Using
dE/dx measurements in the TPC to select pions, a pu-
rity of the single pion sample of greater than 95% over
the whole kinematic range is achieved. All pion pairs in
an event are considered where the pions are close enough
in (⌘,�) space to originate from the fragmentation of the
same parton. The default value of this opening angle
cut is

p
(⌘⇡1 � ⌘⇡2)

2 + (�⇡1 � �⇡2)
2 < 0.3. Pion pairs

produced in the weak decay of the K0 meson are not ex-
pected to contribute to the asymmetry, therefore the cor-
responding mass range (497.6 ± 10 MeV) was excluded
from the analysis.
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FIG. 1. Azimuthal angle defintions in the dihadron system. ~s
a

is the direction of the spin of the polarized proton, ~p
h,{1,2} are

the momenta of the positive and negative pion, respectively
and �

R

is the angle between the production and dihadron
plane.

The transversely polarized cross-section of hadron
pairs in p" + p collisions can be written similar to [26]:

d�UT / sin(�RS)

Z
dxadxbf1(xa)h1(xb)

d��̂

dt̂
H^

1,q(z,M).

(1)

pA

SBT

 P
R

  pB

p1

p2

RHIC: the  process  p + p↑ → (π π) + X  

 dσ ~ dσ0 + sin(ΦS-ΦR) dσUT

Bacchetta & Radici,  
P.R. D70 (04) 094032

Assuming factorization and universality for this process

In Fig. 3, the asymmetry is shown as function of η
when integrated on 3 ≤ jPT j ≤ 13 GeV=c and 0.3 ≤ Mh ≤
1.2 GeV.1 Similarly to the previous figure, for each
experimental η point the theoretical result is integrated in
the corresponding bin. Positive pseudorapidities corre-
spond to backward-propagating transversely polarized
particles: the asymmetry is dominated by the contribution
of transversely polarized partons with low xb, the trans-
versity is less important, and the resulting asymmetry is
largely suppressed. The agreement with data is very good
even though the theoretical band is very narrow. This
feature is determined by the assumptions adopted in the
analysis of ðπþπ−Þ SIDIS data: the low-x behaviour of
transversity cannot be fixed yet by the current fixed-target
data, and it is imposed by hand to grant that the resulting
tensor charge is finite [15,18]. At η < 0, as explained above
the asymmetry is larger because it is dominated by the
valence components of transversity. Here, the situation is
less satisfactory: the 68% band of computed replicas starts
to deviate from the experimental points. We recall that Dg

1,
the gluon channel in di-hadron fragmentation, is poorly
constrained: no data of unpolarized cross sections for the
semi-inclusive ðπþπ−Þ production are available either in
eþe− annihilations or in pp collisions. TheDg

1 contribution
is currently determined only through QCD evolution. It
might also happen that higher-order QCD corrections to
dσ0 are large, whereas it is not the case for the numerator of
AUT because there is no gluon transversity. This lack of
information could be responsible for the discrepancy in
Fig. 3. In any case, it points out that the uncertainty band

could be larger than the indicated one, paradoxically
improving the compatibility with data.
We complete the discussion about the results in Fig. 3 by

observing that some of the replicas lying outside the 68%
band are close to the data points in the η < 0 region. A few
examples are shown in Fig. 3, where the solid (red) line
refers to the result of replica 6 for AUT, the dashed (blue)
line to replica 31, and the dot-dashed (red) line to replica
43. These replicas 6, 31, and 43 do not belong to the 68%
band of replicas that fit the SIDIS data, although their χ2 per
degree of freedom is still reasonably low: 2.04, 1.52, and
2.02, respectively [18]. Moreover, they share a very
peculiar feature, as will be clear in the following.
In Fig. 4, we show the uncertainty band for the 68% of all

replicas of the valence down transversity xhdv1 as a function
of x at Q2 ¼ 2.4 GeV2, that fit the SIDIS data for semi-
inclusive production of ðπþπ−Þ pairs on transversely
polarized proton and deuteron targets. The dark solid lines
with no labels represent the upper and lower limits of the
Soffer bound. The plot corresponds to the darker band with
solid borders in the right panel of Fig. 8 in Ref. [18]. The
replicas in the band tend to saturate the lower limit of the
Soffer bound because they are driven by the COMPASS
deuteron data, in particular by the seventh and eighth bins
in Ref. [18]. The light (red) solid line with label 6
reproduces the transversity from the corresponding replica.
Similarly, the dashed (blue) line refers to replica 31, while
the dot-dashed (red) line to replica 43.
Their trajectories do not follow the trend of the 68% band

at large x. Rather, they deviate towards the upper Soffer
bound and they saturate it. Hence, at large x≳ 0.1 there
seems to be a tension between the COMPASS deuteron data

FIG. 3. The asymmetry AUT as a function of pseudorapidity η,
integrated over Mh and jPT j. Forward kinematics corresponds to
negative η. Solid (red) line for replica 6 of AUT , dashed (blue) line
for replica 31, dot-dashed (red) line for replica 43. Further
notation and conventions as in the previous figure.

FIG. 4. The valence down transversity xhdv1 as a function of x at
Q2 ¼ 2.4 GeV2. The uncertainty band refers to the 68% of
replicas that fit the ðπþπ−Þ SIDIS data off transversely polarized
proton and deuteron targets with the flexible parametrization and
αsðM2

ZÞ ¼ 0.139 [18]. Dark (blue) solid lines with no label for the
upper and lower limits of the Soffer bound. Light (red) solid line
for the transversity from replica 6, dashed (blue) line for replica
31, dot-dashed (red) line for replica 43.

1The indicated Mh range does not overlap with the STAR
experimental bins at the largest Mh [6] because the assumptions
behind the parametrization of the Mh dependence of DiFFs are
valid only up to Mh ≈ 1.2 GeV [15].
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since there are explicit counterexamples showing that TMD
factorization is broken in this case [23]. On the contrary, the
case of di-hadron production can be analyzed using a
collinear factorization framework, which can be applied
also in hadronic collisions. This allows us to study trans-
versity in a process different from SIDIS and explore its
universality.
In the following, we take our parametrizations of h1 and

H∢
1 , obtained by fitting SIDIS and eþe− data, and we

compute the relevant transverse spin azimuthal asymmetry
for semi-inclusive ðπþπ−Þ production in proton-proton
collisions. Then, we compare our predictions with the
STAR data. In spite of some limitations in our estimate (in
particular, we include only valence quarks because these
are the only components of transversity that can be
extracted from the current fixed-target SIDIS data), we
obtain an asymmetry with the same sign of the exper-
imental one, and whose size and shape are in reasonable
agreement with experimental measurements. This is an
important achievement because it gives us confidence in the
reliability of the framework and opens a unique opportunity
to use hadronic collisions data for the extraction of trans-
versity based on the di-hadron collinear mechanism.
We consider the process pA þ p↑

B → ðh1h2Þ þ X where
a proton with momentum pA collides with a transversely
polarized proton pB with spin vector SB, and two unpo-
larized hadrons h1 and h2 (with momenta p1 and p2 and
masses M1 and M2, respectively) are inclusively detected
inside the same jet. We define the pair total momentum
P ¼ p1 þ p2 and relative momentum R ¼ ðp1 − p2Þ=2;
the pair invariant mass is M2

h ¼ P2. Since we work in a
collinear framework, we integrate over the intrinsic trans-
verse components of P with respect to the jet axis. The
components of P perpendicular to the beam (defined by pA)
are indicated by PT. We identify the reaction plane as the
plane formed by pA and P. All azimuthal angles are
measured with respect to this plane (see Fig. 1 and
Ref. [4] for a formal definition). The most relevant angles
are ϕS, the azimuthal angle of the polarization vector SB,
and ϕR, which describes the azimuthal orientation around P
of the plane containing the hadron pair momenta p1 and p2
(see Fig. 1). The modulus jPT j is the hard scale of the
process. Hence, we assume that jPT j ≫ Mh;M1;M2, and
we perform our analysis at leading order in 1=jPT j. The
differential cross section reads [4]

dσ
dηdjPT jdMhdϕRdϕS

¼ dσ0ð1þ sinðϕS − ϕRÞAUTÞ; ð1Þ

where dσ0 is the unpolarized cross section,

dσ0

dηdjPT jdMh
¼ 2jPT j

X

a;b;c;d

Z
dxadxb
4π2z̄

× fa1ðxaÞfb1ðxbÞ
dσ̂ab→cd

dt̂
Dc

1ðz̄;MhÞ; ð2Þ

and the transverse spin asymmetry AUT is given by

AUTðη;jPT j;MhÞ¼
jSBT j2jPT j

dσ0
jRT j
Mh

X

a;b;c;d

Z
dxadxb
16πz̄

×fa1ðxaÞhb1ðxbÞ
dΔσ̂ab↑→c↑d

dt̂
H∢c

1 ðz̄;MhÞ:

ð3Þ

The pseudorapidity η of the hadron pair is defined with
respect to the beam momentum pA. Hence, forward
transversely polarized particles are associated to negative
pseudorapidities. Experimental data have been presented
with the opposite choice [6]. In Eq. (2), the elementary
cross section dσ̂ describes the annihilation of partons a and
b (carrying fractional momenta xa and xb, respectively) into
the partons c and d. The inclusive decay of parton c into the
detected hadron pair is described by the unpolarized DiFF
Dc

1, that depends on the parton fractional energy z carried
by the hadron pair and on the invariant massMh of the pair
itself. Similarly, in Eq. (3) the cross section dΔσ̂ describes
the transfer of polarization in the elementary annihilation
when parton b↑ is transversely polarized. As previously
mentioned, the inclusive fragmentation of the transversely
polarized parton c↑ is described by H∢c

1 . From both SIDIS
and eþe− data, a specific component ofH∢

1 is extracted that
corresponds to the ðπþπ−Þ pair being produced in a state
with mismatch in relative orbital angular momentum
jΔLj ¼ 1; i.e., it corresponds to the interference between
the amplitudes for the decay into a pair with relative swave
or p wave [9]. Accordingly, this component is usually
named interference fragmentation function (IFF) [7]. Since
in this context there is no ambiguity, in the following we
will keep denoting it as H∢

1 .

FIG. 1. Kinematics for the collision of a proton with momen-
tum pA and a tranversely polarized proton with momentum
pB and spin vector SBT. The final state is represented by the
inclusive production of two hadrons with total and relative
momenta P ¼ p1 þ p2 and R ¼ p1 − p2, forming a plane oriented
with the azimuthal angle ϕR with respect to the reaction plane
formed by pA and P.

RADICI, RICCI, BACCHETTA, and MUKHERJEE PHYSICAL REVIEW D 94, 034012 (2016)

034012-2

STAR data vs replicas in Pavia fit

some replicas outside the 68% band from SIDIS fit  
show compatibility with p-p data in forward kinematics

Improving errors in large-x 
region?

Global fit is in progress.

Radici et al, P.R. D94 (16) 034032
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Discussion

 Transversity can be reliably extracted using data on single and di-hadron production. 
    Both methods are useful to check universality of functions 

 Tensor charge is useful for low energy exploration of BSM physics 
 Data from JLab, RHIC, EIC will complement each other as they explore different kinematical regions 
 Data from Electron Ion Collider will allow  
• Extend data to low-x region 
• Explore high-Q and high-x region to  
complement JLab, thus explore   
TMD higher twist contributions  

 Possible important related topics (not covered in this talk): 
• Test relationship between collinear and TMD treatment 
• Separate reliably beam and target fragmentation regions 
• Other possible ways to explore transversity using chiral-odd GPDs?  
• Lattice QCD studies as benchmark and/or constraints in fits? 
• … 

 

See talk by Osvaldo Gonzalez
Liuti, Goldstein, Courtoy, Gonzalez
See talk by Rajan Gupta
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at best be explored only on a qualitative level. Existing fa-
cilities either suffer from a much too restricted kinematic
coverage or from low luminosity or from both.

The SIDIS measurement discussed below is the nec-
essary method to access TMDs. We define two planes in
SIDIS: the lepton plane and the hadron plane, as shown
in fig. 15, which allows us to study different angular de-
pendences in the hadron production cross-sections. These
angular distributions are important to extract the TMDs
since each of them has a unique angular dependence. Pre-
cision measurements of the various angular modulations
are only possible with a comprehensive and hermetic de-
tector. With such a detector and the EIC’s ability to pro-
vide a wide kinematic range and high luminosity, we see
the following opportunities for measurements at an EIC
that would be impossible in current experiments:

– high precision quantitative measurements of all the
quark TMDs in the valence region, with the ability
to go to sufficiently large values of Q2 in order to sup-
press potential higher twist contaminations;

– first-ever measurements of the TMDs for anti-quarks
and gluons;

– multi-dimensional representations of the observables
leading to TMDs;

– systematic studies of perturbative QCD techniques
(for polarization observables) and studies of QCD evo-
lution properties of TMDs;

– the transition between the non-perturbative low
transverse-momentum region and perturbative high
transverse-momentum region for both polarized and
unpolarized collisions due to a wide range of kinematic
coverage.

The above discussions apply to all of the eight TMD
quark distributions listed in fig. 16. The rich physics cov-
ered by the TMD quark and gluon distribution functions
can be thoroughly investigated at the EIC with a dedi-
cated detector. In the following subsections, we will take
semi-inclusive DIS as an example for the quark Sivers
function and di-hadron production for the gluon Sivers
function and highlight the impact the EIC could have on
these measurements.

Semi-inclusive Deep Inelastic Scattering

The TMDs are measured using SIDIS processes. In
such reactions, the hadron, which results from the frag-
mentation of a scattered quark, “remembers” the original
motion of the quark, including its transverse momentum.
SIDIS depends on six kinematic variables. In addition to
the variables for inclusive DIS, x, y = (P ·q)/(P ·l), and the
azimuthal angle φS describing the orientation of the tar-
get spin vector for transverse polarization, one has three
variables for the final state hadron, which we denote by
z = (P ·Ph)/(P · q) (longitudinal hadron momentum frac-
tion), PhT (magnitude of transverse hadron momentum),
and the angle φh for the orientation of PhT (see fig. 15). In
the one-photon exchange approximation, the SIDIS cross-
section can be decomposed in terms of structure functions.
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Current data for Sivers asymmetry:
COMPASS h±: PhT < 1.6 GeV, z > 0.1

HERMES π0,±, K±: PhT < 1 GeV, 0.2 < z < 0.7

JLab Hall-A π±: PhT < 0.45 GeV, 0.4 < z < 0.6
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Fig. 18. Kinematic coverage in x and Q2 for the EIC com-
pared to the coverage of the planned JLab12 experiment. The
kinematics of the existing experimental measurements are also
shown for comparison.

Each of them is characterized by the unique azimuthal
angular modulation in the differential cross-sections. The
extraction of these structure functions will give access to
all of the leading TMD quark distributions listed in fig. 16.

For example, for the spin-average and single-spin-
dependent contributions, we have

dσ

dxdy dφS dz dφh dP 2
hT

∝

FUU,T + |S⊥| sin(φh − φS)F sin(φh−φS)
UT,T + . . . , (13)

where FUU represents the spin-average structure func-
tion depending on the unpolarized quark distribution
fq
1 (x, kT ), and FUT depends on the quark Sivers function

f⊥q
1T (x, kT ). For TMD studies, one is interested in the kine-

matic region defined by PhT ≪ Q, for which the struc-
ture functions can be written as certain convolutions of
TMDs. To extract the quark Sivers function, we measure
the sin(φh − φs) modulation of the single-transverse-spin
asymmetry (SSA), which is defined by the ratio of the two
cross-section terms in eq. (13). This asymmetry depends
on four kinematics: Q2, xB , zh, PhT . A systematic and de-
tailed study of the Sivers function, and TMDs in general,
can only be performed on the basis of precise spin and
azimuthal asymmetry amplitude measurements in SIDIS
over a wide kinematic range. In fig. 18, we compare the
x-Q2 coverage of the HERMES, COMPASS, and JLab
12GeV upgrade with the coverage of an EIC. The wide
kinematic coverage puts the EIC in the unique position
of accessing the valence region at much larger Q2 than
current and near-future experiments while also accessing
low-x down to values of about 10−5, where sea quarks and
gluons could be studied in detail. The expected high lumi-
nosity will also allow for a fully differential analysis over
almost the entire kinematic range of x, Q2, z and PhT ,
which is vital for phenomenological analyses.

See talk by Leonard Gamberg


